Pairing Heaps are Sub - optimalbyMichael

نویسنده

  • Michael L. Fredman
چکیده

Pairing heaps were introduced as a self-adjusting alternative to Fibonacci heaps. They provably enjoy log n amortized costs for the standard heap operations. Although it has not been veri ed that pairing heaps perform the decrease key operation in constant amortized time, this has been conjectured and extensive experimental evidence supports this conjecture. Moreover, pairing heaps have been observed to be superior to Fibonacci heaps in practice. However, as demonstrated in this paper, pairing heaps do not accommodate decrease key operations in constant amortized time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved Upper Bounds for Pairing Heaps

Pairing heaps are shown to have constant amortized time Insert and Meld, thus showing that pairing heaps have the same amortized runtimes as Fibonacci heaps for all operations but Decrease-Key.

متن کامل

Rank-Pairing Heaps

We introduce the rank-pairing heap, a heap (priority queue) implementation that combines the asymptotic efficiency of Fibonacci heaps with much of the simplicity of pairing heaps. Unlike all other heap implementations that match the bounds of Fibonacci heaps, our structure needs only one cut and no other structural changes per key decrease; the trees representing the heap can evolve to have arb...

متن کامل

Heaps Simplified

The heap is a basic data structure used in a wide variety of applications, including shortest path and minimum spanning tree algorithms. In this paper we explore the design space of comparison-based, amortized-efficient heap implementations. From a consideration of dynamic single-elimination tournaments, we obtain the binomial queue, a classical heap implementation, in a simple and natural way....

متن کامل

Pairing heaps with O(log log n) decrease cost

We give a variation of the pairing heaps for which the time bounds for all the operations match the lower bound proved by Fredman for a family of similar self-adjusting heaps. Namely, our heap structure requires O(1) for insert and findmin, O(log n) for delete-min, and O(log logn) for decreasekey and meld (all the bounds are in the amortized sense except for find-min).

متن کامل

Pairing Heaps with Costless Meld

Improving the structure and analysis in [1], we give a variation of the pairing heaps that has amortized zero cost per meld (compared to an O(log log n) in [1]) and the same amortized bounds for all other operations. More precisely, the new pairing heap requires: no cost per meld, O(1) per find-min and insert, O(log n) per delete-min, and O(log log n) per decrease-key. These bounds are the best...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997